An everywhere divergent Fourier-Walsh series of the class $L({\rm log}\sp{+}{\rm log}\sp{+}L)\sp{1-\varepsilon }$
نویسندگان
چکیده
منابع مشابه
Almost Everywhere Strong Summability of Two-dimensional Walsh-fourier Series
A BMO-estimation of two-dimensional Walsh-Fourier series is proved from which an almost everywhere exponential summability of quadratic partial sums of double Walsh-Fourier series is derived.
متن کاملOn Walsh-fourier Series^)
Every function f(x) which is of period 1 and Lebesgue integrable on [0, 1 ] may be expanded in a Walsh-Fourier series(3), f(x)~ ?.?=n ak\pk(x), where ak=fof(x)ypk(x)dx, k=0, 1, 2, • • • . Fine exhibited some of the basic similarities and differences between the trigonometric orthonormal system and the Walsh system. He identified the Walsh functions with the full set of characters of the dyadic ...
متن کاملAlmost Everywhere Convergence of a Subsequence of the Nörlund Logarithmic Means of Walsh–kaczmarz–fourier Series
The main aim of this paper is to prove that the maximal operator of a subsequence of the (one-dimensional) logarithmic means of Walsh-Kaczmarz-Fourier series is of weak type (1,1) . Moreover, we prove that the maximal operator of the logarithmic means of quadratical partial sums of double Walsh-Kaczmarz-Fourier series is of weak type (1,1) , provided that the supremum in the maximal operator is...
متن کاملAlmost Everywhere Convergence of Subsequence of Logarithmic Means of Walsh-fourier Series
In this paper we prove that the maximal operator of the subsequence of logarithmic means of Walsh-Fourier series is weak type (1,1). Moreover, the logarithmic means tmn (f) of the function f ∈ L converge a.e. to f as n →∞. In the literature, it is known the notion of the Riesz’s logarithmic means of a Fourier series. The n-th mean of the Fourier series of the integrable function f is defined by...
متن کاملStatistical Convergence of Walsh-fourier Series
This is a brief and concise account of the basic concepts and results on statistical convergence, strong Cesàro summability and Walsh-Fourier series. To emphasize the significance of statistical convergence, for example we mention the fact that the one-dimensional Walsh-Fourier series of an integrable (in Lebesgue’s sense) function may be divergent almost everywhere, but it is statistically con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1975
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1975-0377406-8