An extension of the entropy theorem for parameter estimation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extension of the Wedderburn-Artin Theorem

‎In this paper we give conditions under which a ring is isomorphic to a structural matrix ring over a division ring.

متن کامل

An Infinitary Extension of the Graham–rothschild Parameter Sets Theorem

The Graham-Rothschild Parameter Sets Theorem is one of the most powerful results of Ramsey Theory. (The Hales-Jewett Theorem is its most trivial instance.) Using the algebra of βS, the Stone-Čech compactification of a discrete semigroup, we derive an infinitary extension of the GrahamRothschild Parameter Sets Theorem. Even the simplest finite instance of this extension is a significant extensio...

متن کامل

The uniqueness theorem for a two-parameter extended relative entropy

Shannon entropy [1] is one of fundamental quantities in classical information theory and uniquely determinded by the Shannon-Khinchin axiom or the Faddeev axiom. One-parameter extensions for Shannon entropy have been studied by many researchers. The Rényi entropy [2] and the Tsallis entropy [3] are famous. In the paper [4], the uniqueness theorem for the Tsallis entropy was proved. Also, in our...

متن کامل

Extension of Krull's intersection theorem for fuzzy module

‎In this article we introduce $mu$-filtered fuzzy module with a family of fuzzy submodules.  It shows the relation between $mu$-filtered fuzzy modules and crisp filtered modules by level sets. We investigate fuzzy topology on the $mu$-filtered fuzzy module and apply that to introduce fuzzy completion. Finally we extend Krull's intersection theorem of fuzzy ideals by using concept $mu$-adic comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Control

سال: 1982

ISSN: 0019-9958

DOI: 10.1016/s0019-9958(82)91153-6