An Extremum Problem for Convex Polygons

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extremum problem for polynomials

© Foundation Compositio Mathematica, 1959-1960, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fic...

متن کامل

The Unit Distance Problem for Centrally Symmetric Convex Polygons

Let f(n) be the maximum number of unit distances determined by the vertices of a convex n-gon. Erdős and Moser conjectured that this function is linear. Supporting this conjecture we prove that f (n) ∼ 2n where f (n) is the restriction of f (n) to centrally symmetric convex n-gons. We also present two applications of this result. Given a strictly convex domain K with smooth boundary, if fK (n) ...

متن کامل

Extremal problems for convex polygons

Consider a convex polygon Vn with n sides, perimeter Pn, diameter Dn, area An, sum of distances between vertices Sn and widthWn. Minimizing or maximizing any of these quantities while fixing another defines ten pairs of extremal polygon problems (one of which usually has a trivial solution or no solution at all). We survey research on these problems, which uses geometrical reasoning increasingl...

متن کامل

An Isodiametric Problem for Equilateral Polygons

The maximal perimeter of an equilateral convex polygon with unit diameter and n = 2m edges is not known when m ≥ 4. Using experimental methods, we construct improved polygons for m ≥ 4, and prove that the perimeters we obtain cannot be improved for large n by more than c/n4, for a particular constant c.

متن کامل

Dissections of Polygons into Convex Polygons

In the paper we present purely combinatorial conditions that allow us to recognize the topological equivalence (or non-equivalence) of two given dissections. Using a computer program based on this result, we are able to generate a set which contains all topologically non-equivalent dissections of a p0-gon into convex pi-gons, i = 1, ..., n, where n, p0, ..., pn are integers such that n ≥ 2, pi ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sitzungsberichte und Anzeiger der mathematisch-naturwissenschaftlichen Klasse

سال: 2010

ISSN: 0723-791X,1728-0540

DOI: 10.1553/sunda2006ssbii-173