An FPGA-Based Neuron Activity Extraction Unit for a Wireless Neural Interface
نویسندگان
چکیده
منابع مشابه
An Efficient LUT Design on FPGA for Memory-Based Multiplication
An efficient Lookup Table (LUT) design for memory-based multiplier is proposed. This multiplier can be preferred in DSP computation where one of the inputs, which is filter coefficient to the multiplier, is fixed. In this design, all possible product terms of input multiplicand with the fixed coefficient are stored directly in memory. In contrast to an earlier proposition Odd Multiple Storage ...
متن کاملAn FPGA-Based Face Detector Using Neural Network and a Scalable Floating Point Unit
The study implemented an FPGA-based face detector using Neural Networks and a scalable Floating Point arithmetic Unit (FPU). The FPU provides dynamic range and reduces the bit of the arithmetic unit more than fixed point method does. These features led to reduction in the memory so that it is efficient for neural networks system with large size data bits. The arithmetic unit occupies 39~45% of ...
متن کاملAn FPGA-based Floating Point Unit for Rounding Error Analysis
Detection of floating-point rounding errors normally requires run-time analysis in order to be effective and software-based tools are seldom used due to the extremely high computational demands. In this paper we present a field programmable gate array (FPGA) based floating-point coprocessor which supports standard IEEE-754 arithmetic, user selectable precision and Monte Carlo Arithmetic (MCA). ...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2020
ISSN: 2079-9292
DOI: 10.3390/electronics9111834