An improved bound for Sullivan's convex hull theorem
نویسندگان
چکیده
منابع مشابه
An Improved Lower Bound for Folkman’s Theorem
Folkman’s theorem asserts that for each k ∈ N, there exists a natural number n = F (k) such that whenever the elements of [n] are two-coloured, there exists a set A ⊂ [n] of size k with the property that all the sums of the form ∑ x∈B x, where B is a nonempty subset of A, are contained in [n] and have the same colour. In 1989, Erdős and Spencer showed that F (k) ≥ 2ck2/ log , where c > 0 is an ...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملAn Improved Error Bound Theorem for Approximate Markov Chain s
Recently an error bound theorem was reported to conclude analytic error bounds for approximate Markov chains. The theorem required a uniform bound for marginal expectations of the approximate model. This note will relax this bound to steady state rather than marginal expectations as of practical interest: (i) to simplify verification and/or (ii) to obtain a more accurate error bound. An ALOHA-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 2016
ISSN: 0024-6115,1460-244X
DOI: 10.1112/plms/pdv064