An infinitesimal proof of the implicit function theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Constructive Implicit Function Theorem and Proof in Logistic Mixtures

There is the work by Bridges et al (1999) on the key features of a constructive proof of the implicit function theorem, including some applications to physics and mechanics. For mixtures of logistic distributions such information is lacking, although a special instance of the implicit function theorem prevails therein. The theorem is needed to see that the ridgeline function, which carries info...

متن کامل

The Implicit Function Theorem and Implicit Parametrizations∗

We discuss a differential equations treatment of the implicit functions problem. Our approach allows a precise and complete description of the solution, of continuity and differentiability properties. The critical case is also considered. The investigation is devoted to dimension two and three, but extensions to higher dimension are possible. MSC: 26B10, 34A12, 53A05. keywords: implicit functio...

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

Robinson ’ s implicit function theorem

Robinson’s implicit function theorem has played a mayor role in the analysis of stability of optimization problems in the last two decades. In this paper we take a new look at this theorem, and with an updated terminology go back to the roots and present some extensions.

متن کامل

The Contraction Mapping Theorem and the Implicit Function Theorem

denote the open ball of radius a centred on the origin in IR. If the function ~g : Ba → IR d obeys there is a constant G < 1 such that ‖~g(~x)− ~g(~y)‖ ≤ G ‖~x− ~y‖ for all ~x, ~y ∈ Ba (H1) ‖~g(~0)‖ < (1−G)a (H2) then the equation ~x = ~g(~x) has exactly one solution. Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word “Contraction” in the name of the theorem. Because G <...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1993

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s001708950000971x