An inverse eigenvalue problem for a general convex domain
نویسندگان
چکیده
منابع مشابه
On an Inverse Eigenvalue Problem for Unitary
We show that a unitary upper Hessenberg matrix with positive subdiago-nal elements is uniquely determined by its eigenvalues and the eigenvalues of a modiied principal submatrix. This provides an analog of a well-known result for Jacobi matrices.
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملA Test Matrix for an Inverse Eigenvalue Problem
We present a real symmetric tridiagonalmatrix of order nwhose eigenvalues are {2k}n−1 k=0 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l + 1}n−2 l=0 . Thematrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1983
ISSN: 0022-247X
DOI: 10.1016/0022-247x(83)90006-9