An SDP Method for Copositivity of Partially Symmetric Tensors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound θ on the clique number and its tightening θ′ introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of recently established semidefinite programming bound hierarchies starting with θ′ rapidly...

متن کامل

Computing symmetric rank for symmetric tensors

We consider the problem of determining the symmetric tensor rank for symmetric tensors with an algebraic geometry approach. We give algorithms for computing the symmetric rank for 2 × · · · × 2 tensors and for tensors of small border rank. From a geometric point of view, we describe the symmetric rank strata for some secant varieties of Veronese varieties.

متن کامل

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

Symmetric nonnegative tensors and copositive tensors

Article history: Received 6 December 2012 Accepted 11 March 2013 Available online 8 April 2013 Submitted by R.A. Brualdi AMS classification: 15A18 15A69

متن کامل

Symmetric Tensors and Symmetric Tensor Rank

A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them being symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2020

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2020/5894518