An unsupervised cyberattack detection scheme for AC microgrids using Gaussian process regression and one‐class support vector machine anomaly detection

نویسندگان

چکیده

This paper addresses the cybersecurity of hierarchical control AC microgrids with distributed secondary control. The false data injection (FDI) cyberattack is assumed to alter operating frequency inverter-based generators (DGs) in an islanded microgrid. For consisting grid-forming inverters a manner, attack on one DG deteriorates not only corresponding but also other DGs that receive corrupted information via communication network. To this end, FDI detection algorithm based combination Gaussian process regression and one-class support vector machine (OC-SVM) anomaly introduced. unsupervised sense it does require labelled abnormal for training which difficult collect. model predicts response DG, its prediction error estimated variances provide input OC-SVM detector. returns enhanced performance than standalone OC-SVM. proposed detector trained tested collected from 4 microgrid test validated both simulation hardware-in-the-loop testbeds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection using Support Vector Machine

Support vector machine are among the most well known supervised anomaly detection technique, which are very efficient in handling large and high dimensional dataset. SVM, a powerful machine method developed from statistical learning and has made significant achievement in some field. This Technique does not suffer the limitations of data dimensionality and limited samples. In this present study...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

Support vector regression for anomaly detection from measurement histories

This research focuses on the analysis of measurements from distributed sensing of structures. The premise is that ambient temperature variations, and hence the temperature distribution across the structure, have a strong correlation with structural response and that this relationship could be exploited for anomaly detection. Specifically, this research first investigates whether support vector ...

متن کامل

Robust Anomaly Detection Using Support Vector Machines

Using the 1998 DARPA BSM data set collected at MIT’s Lincoln Labs to study intrusion detection systems, the performance of robust support vector machines (RSVMs) was compared with that of conventional support vector machines and nearest neighbor classifiers in separating normal usage profiles from intrusive profiles of computer programs. The results indicate the superiority of RSVMs not only in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Renewable Power Generation

سال: 2023

ISSN: ['1752-1424', '1752-1416']

DOI: https://doi.org/10.1049/rpg2.12753