Analogues to Lie Method and Noether’s Theorem in Fractal Calculus
نویسندگان
چکیده
منابع مشابه
Ternary analogues of Lie and Malcev algebras
We consider two analogues of associativity for ternary algebras: total and partial associativity. Using the corresponding ternary associators, we define ternary analogues of alternative and assosymmetric algebras. On any ternary algebra the alternating sum [a, b, c] = abc − acb − bac + bca + cab − cba (the ternary analogue of the Lie bracket) defines a structure of an anticommutative ternary al...
متن کاملVariational Calculus on Lie Algebroids
It is shown that the Lagrange’s equations for a Lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of Lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.
متن کاملConnectivity calculus of fractal polyhedrons
The paper analyzes the connectivity information (more precisely, numbers of tunnels and their homological (co)cycle classification) of fractal polyhedra. Homology chain contractions and its combinatorial counterparts, called homological spanning forest (HSF), are presented here as an useful topological tool, which codifies such information and provides an hierarchical directed graph-based repre...
متن کاملIntegration with Respect to Fractal Functions and Stochastic Calculus Ii
The link between fractional and stochastic calculus established in part I of this paper is investigated in more detail. We study a fractional integral operator extending the Lebesgue–Stieltjes integral and introduce a related concept of stochastic integral which is similar to the so–called forward integral in stochastic integration theory. The results are applied to ODE driven by fractal functi...
متن کاملRegular Lie Groups and a Theorem of Lie-palais
In 1984 Milnor had shown how to deduce the Lie-Palais theorem on integration of infinitesimal actions of finite-dimensional Lie algebras on compact manifolds from general theory of regular Lie groups modelled on locally convex spaces. We show how, in the case of effective action, one can eliminate from Milnor’s argument the abstract Lie-Cartan theorem, making the deduction rather elementary. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and Fractional
سال: 2019
ISSN: 2504-3110
DOI: 10.3390/fractalfract3020025