Analysing Hyper Spectral Reflectance With Gaussian Process And Combined Kernel
نویسندگان
چکیده
منابع مشابه
Kernel discriminant analysis and clustering with parsimonious Gaussian process models
This work presents a family of parsimonious Gaussian process models which allow to build, from a finite sample, a model-based classifier in an infinite dimensional space. The proposed parsimonious models are obtained by constraining the eigendecomposition of the Gaussian processes modeling each class. This allows in particular to use non-linear mapping functions which project the observations i...
متن کاملSparse inverse kernel Gaussian Process regression
Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to lar...
متن کاملKernel Structure Discovery for Gaussian Process Classification
This project was done at the Cambridge Machine Learning Group, as part of the larger effort to build an Automated Statistician. Given a data set, the Automated Statistician should run different methods to suggest interpretable hypotheses and the potential models to use for this data. In this project, we have shown that automatic kernel discovery can be achieved for GP classification. We impleme...
متن کاملMultiresolution Kernel Approximation for Gaussian Process Regression
(a) (b) (c) Figure: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea. (a) In simple blocked low rank approximation the diagonal blocks a...
متن کاملStatistical Analysis of Hyper-Spectral Data: A Non-Gaussian Approach
We investigate the statistical modeling of hyper-spectral data. The accurate modeling of experimental data is critical in target detection and classification applications. In fact, having a statistical model that is capable of properly describing data variability leads to the derivation of the best decision strategies together with a reliable assessment of algorithm performance. Most existing c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Multidisciplinary Scientific Research
سال: 2020
ISSN: 2581-4281
DOI: 10.31426/ijamsr.2020.3.10.3811