Analysis of Feature Extraction Algorithms Used in Brain-Computer Interfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Feature Extraction Methods for Brain-Computer Interfaces

This paper compares classification accuracies of feature extraction methods (FEMs) as used in sensory motor rhythm (SMR) based Brain-Computer Interfaces (BCIs). Features were extracted offline from 9 subjects and classified with linear discriminant analysis. The following FEMs were compared: adaptive autoregressive parameters, band power, phase locking value, time domain parameters, and Hjorth ...

متن کامل

A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...

متن کامل

Feature selection for brain-computer interfaces

Brain-Computer Interface (BCI) systems are a means of establishing communication for severely paralyzed patients. Based on the brain activity signals during the execution of mental tasks by a user, a computer system translates those signals first into higher-level features and finally into control commands for communication interfaces. This involves a number of algorithmic steps that have to be...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: DEStech Transactions on Engineering and Technology Research

سال: 2017

ISSN: 2475-885X

DOI: 10.12783/dtetr/ameme2016/5793