ANALYSIS OF SEMANTIC SPACE BY PROBABILISTIC UNFOLDING MODEL
نویسندگان
چکیده
منابع مشابه
From Semantic to Emotional Space in Probabilistic Sense Sentiment Analysis
This paper proposes an effective approach to model the emotional space of words to infer their Sense Sentiment Similarity (SSS). SSS reflects the distance between the words regarding their senses and underlying sentiments. We propose a probabilistic approach that is built on a hidden emotional model in which the basic human emotions are considered as hidden. This leads to predict a vector of em...
متن کاملBrain Morphometry by Probabilistic Latent Semantic Analysis
The paper propses a new shape morphometry approach that combines advanced classification techniques with geometric features to identify morphological abnormalities on the brain surface. Our aim is to improve the classification accuracy in distinguishing between normal subjects and schizophrenic patients. The approach is inspired by natural language processing. Local brain surface geometric patt...
متن کاملProbabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two{mode and co-occurrence data, which has applications in information retrieval and ltering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occu...
متن کاملProbabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis (pLSA) is a technique from the category of topic models. Its main goal is to model cooccurrence information under a probabilistic framework in order to discover the underlying semantic structure of the data. It was developed in 1999 by Th. Hofmann [7] and it was initially used for text-based applications (such as indexing, retrieval, clustering); however i...
متن کاملProbabilistic Semantic Analysis of Speech
This paper presents a new probabilistic approach to semantic analysis of speech. The problem of nding the semantic contents of a word chain is modeled as the problem of assigning semantic attributes to words. The discrete assignment function is characterized by random vectors and its probabilities. By computing the best of all possible statistically modeled assignments, we get the semantic cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodo Keiryogaku (The Japanese Journal of Behaviormetrics)
سال: 1994
ISSN: 0385-5481,1880-4705
DOI: 10.2333/jbhmk.21.66