Analytical model of carrier mobility in a Polymer Field Effect Transistor
نویسندگان
چکیده
منابع مشابه
Submicrometer Polymer Field - Effect Transistor
Recent developments towards future polymer electronics are aimed at different applications as organic displays, complementary circuits, and all-polymer integrated circuits [1-3]. Basic devices are organic field-effect transistors (OFET, cross section in Figs.2 and 3) with an active layer made from an organic material. Until now the achieved performance of OFET's is not sufficient for envisaged ...
متن کاملTrilayer Graphene Nanoribbon Field Effect Transistor Analytical Model
The approaching scaling of Field Effect Transistors (FETs) in nanometer scale assures the smaller dimension, low-power consumption, very large computing power, low energy delay product and high density as well as high speed in processor. Trilayer graphene nanoribbon with different stacking arrangements (ABA and ABC) indicates different electrical properties. Based on this theory, ABA-stacked tr...
متن کاملCarrier Mobility in Field-Effect Transistors
Authors investigate the carrier mobility in field-effect transistors mainly when fabricated on Si(110) wafers. They showed that the methods developed to extract the conduction parameters cannot be implemented for Si(110) p-MOSFETs. Authors then developed a more accurate mobility model able to simulate not only the drivability but also the transconductance for these same devices. The study of th...
متن کاملIN-SITU CHARACTERIZATION OF CARRIER MOBILITY IN FIELD EFFECT TRANSISTOllS
The Field Effect Transistor (FET) is today the basic element of Very Large ScaIe Integrated (VLSI) digital systems. FETs are also used in analog circuits for high frequency (microwave) applications. Different types of FETs are the Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), the MEtal Semiconductor Field Effect Transistors (MESFETs) and the MOdulation Doped Field Effect Transis...
متن کاملPolymer Electrolyte-Gated Carbon Nanotube Field-Effect Transistor
Single-walled carbon nanotube field-effect transistors were fabricated using solid electrolyte (PEO plus LiClO4) as gating materials. The SWNT FETs demonstrated strong gate-channel coupling with improved device characteristics compared with back-gated devices. More importantly, the nanotubes can be easily doped using different concentrations of electron acceptor mixed in the polymer materials. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hemijska industrija
سال: 2007
ISSN: 0367-598X,2217-7426
DOI: 10.2298/hemind0702055m