Analytical solution for transient electroosmotic flow in a rotating microchannel
نویسندگان
چکیده
منابع مشابه
Analytical solution for transient electroosmotic flow in a rotating microchannel
An analytical solution is developed for the unsteady flow of fluid through a parallel rotating plate microchannel, under the influence of electrokinetic force using the Debye–Hückel (DH) approximation. Transient Navier–Stokes equations are solved exactly in terms of the cosine Fourier series using the separation of variables method. The effects of frame rotation frequency and electroosmotic for...
متن کاملElectroosmotic flow velocity measurements in a square microchannel
Experiments were performed using a microparticle image velocimetry (MPIV) for 2D velocity distributions of electroosmotically driven flows in a 40-mm-long microchannel with a square cross section of 200×200 μm. Electroosmotic flow (EOF) bulk fluid velocity measurements were made in a range of streamwise electric field strengths from 5 to 25 kV/m. A series of seed particle calibration tests can ...
متن کاملElectro-osmotic Flow Through a Rotating Microchannel
An analytical model is presented for electro-osmotic flow through a wide rectangular microchannel rotating about an axis perpendicular to its own. The flow is driven by a steady electric field applied along the channel axis, where the upper and lower walls are charged with uniform but possibly disparate zeta potentials. The aim is to understand the interaction between Coriolis force, pressure g...
متن کاملElectro-osmotic flow in a rotating rectangular microchannel.
An analytical model is presented for low-Rossby-number electro-osmotic flow in a rectangular channel rotating about an axis perpendicular to its own. The flow is driven under the combined action of Coriolis, pressure, viscous and electric forces. Analytical solutions in the form of eigenfunction expansions are developed for the problem, which is controlled by the rotation parameter (or the inve...
متن کاملAn Analytical Solution for One-dimensional Horizontal Imbibition in a Cocurrent Flow
Cocurrent spontaneous imbibition (COCSI) of an aqueous phase into matrix blocks arising from capillary forces is an important mechanism for petroleum recovery from fractured petroleum reservoirs. In this work, the modeling of countercurrent imbibition is used to develop the appropriate scaling equations. Considering the imbibition process and the water and oil movement respectively as the wet p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RSC Advances
سال: 2016
ISSN: 2046-2069
DOI: 10.1039/c5ra25325j