Analyticity of dimensions for hyperbolic surface diffeomorphisms
نویسندگان
چکیده
منابع مشابه
Measures of Maximal Dimension for Hyperbolic Diffeomorphisms
We establish the existence of ergodic measures of maximal Hausdorff dimension for hyperbolic sets of surface diffeomorphisms. This is a dimension-theoretical version of the existence of ergodic measures of maximal entropy. The crucial difference is that while the entropy map is upper-semicontinuous, the map ν 7→ dimH ν is neither uppersemicontinuous nor lower-semicontinuous. This forces us to d...
متن کاملDynamical determinants and spectrum for hyperbolic diffeomorphisms
For smooth hyperbolic dynamical systems and smooth weights, we relate Ruelle transfer operators with dynamical Fredholm determinants and dynamical zeta functions: First, we establish bounds for the essential spectral radii of the transfer operator on new spaces of anisotropic distributions, improving our previous results [7]. Then we give a new proof of Kitaev’s [17] lower bound for the radius ...
متن کاملThe Cohomological Equation for Partially Hyperbolic Diffeomorphisms
Introduction 2 1. Techniques in the proof of Theorem A 7 2. Partial hyperbolicity and bunching conditions 10 2.1. Notation 11 3. The partially hyperbolic skew product associated to a cocycle 12 4. Saturated sections of admissible bundles 13 4.1. Saturated cocycles: proof of Theorem A, parts I and III 18 5. Hölder regularity: proof of Theorem A, part II. 21 6. Jets 28 6.1. Prolongations 29 6.2. ...
متن کاملEntropy-expansiveness for Partially Hyperbolic Diffeomorphisms
We show that diffeomorphisms with a dominated splitting of the form Es⊕Ec⊕Eu, where Ec is a nonhyperbolic central bundle that splits in a dominated way into 1-dimensional subbundles, are entropy-expansive. In particular, they have a principal symbolic extension and equilibrium states.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2015
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/12477