Analyzing Machine Learning Enabled Fake News Detection Techniques for Diversified Datasets

نویسندگان

چکیده

Fake news, or fabric which appeared to be untrue with point of deceiving the open, has developed in ubiquity current a long time. Spreading this kind data undermines societal cohesiveness and well by cultivating political division doubt government. Since sheer volume news being disseminated through social media, human confirmation ended up incomprehensible, driving improvement arrangement robotized strategies for recognizable proof wrong news. publishers use variety stylistic techniques boost popularity their works, one is arouse readers’ emotions. Due this, text analytics’ sentiment analysis, determines polarity intensity feelings conveyed text, now utilized false detection methods, as either system’s foundation supplementary component. This assessment analyzes full explanation identification. The study also emphasizes characteristics, features, taxonomy, different sorts categories approaches spotting fake research recognized using probabilistic latent semantic analysis approach. In particular, describes fundamental theory related work provide deep comparative various literature works that contributed topic. Besides comparison machine learning done assess performance detection. For purpose, three datasets have been used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Tri-Relationship for Fake News Detection

Social media for news consumption is becoming popular nowadays. The low cost, easy access and rapid information dissemination of social media bring benefits for people to seek out news timely. However, it also causes the widespread of fake news, i.e., low-quality news pieces that are intentionally fabricated. The fake news brings about several negative effects on individual consumers, news ecos...

متن کامل

Automatic Detection of Fake News

The proliferation of misleading information in everyday access media outlets such as social media feeds, news blogs, and online newspapers have made it challenging to identify trustworthy news sources, thus increasing the need for computational tools able to provide insights into the reliability of online content. In this paper, we focus on the automatic identification of fake content in online...

متن کامل

Stance Detection for Fake News Identification

The latest election cycle generated sobering examples of the threat that fake news poses to democracy. Primarily disseminated by hyper-partisan media outlets, fake news proved capable of becoming viral sensations that can dominate social media and influence elections. To address this problem, we begin with stance detection, which is a first step towards identifying fake news. The goal of this p...

متن کامل

Machine Learning Techniques for Intrusion Detection

An Intrusion Detection System (IDS) is a software that monitors a single or a network of computers for malicious activities (attacks) that are aimed at stealing or censoring information or corrupting network protocols. Most techniques used in today’s IDS are not able to deal with the dynamic and complex nature of cyber attacks on computer networks. Hence, efficient adaptive methods like various...

متن کامل

Machine Learning Techniques for Network Intrusion Detection

Most of the currently available network security techniques are not able to cope with the dynamic and increasingly complex nature of cyber attacks on distributed computer systems. Therefore, an automated and adaptive defensive tool is imperative for computer networks. Alongside the existing prevention techniques such as encryption and firewalls, Intrusion Detection System (IDS) has established ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wireless Communications and Mobile Computing

سال: 2022

ISSN: ['1530-8669', '1530-8677']

DOI: https://doi.org/10.1155/2022/1575365