Anomaly Detection Using a Sliding Window Technique and Data Imputation with Machine Learning for Hydrological Time Series

نویسندگان

چکیده

Water level data obtained from telemetry stations typically contains large number of outliers. Anomaly detection and a imputation are necessary steps in monitoring system. can be detected if its values lie outside normal pattern distribution. We developed median-based statistical outlier approach using sliding window technique. In order to fill anomalies, various interpolation techniques were considered. Our proposed framework exhibited promising results after evaluating with F1-score root mean square error (RMSE) based on our artificially induced points. The present system also easily applied patterns hydrological time series diverse choices internal methods fine-tuned parameters. Specifically, the Spline method yielded superior performance non-cyclical while long short-term memory (LSTM) outperformed other distinct tidal pattern.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Transfer Learning for Time Series Anomaly Detection

Currently, time series anomaly detection is attracting significant interest. This is especially true in industry, where companies continuously monitor all aspects of production processes using various sensors. In this context, methods that automatically detect anomalous behavior in the collected data could have a large impact. Unfortunately, for a variety of reasons, it is often difficult to co...

متن کامل

Anomaly Detection for Univariate Time-Series Data

Some of the biggest challenges in anomaly based network intrusion detection systems have to do with being able to handle anomaly detection at huge scale, in real time. The incoming data stream is homogeneous, containing different anomalous patterns along with a large amount of normal data. We pose the problem as that of detecting the anomaly in the data stream in realtime. We define an approach...

متن کامل

Anomaly Detection in Road Networks using Sliding-Window Tensor Factorization

Anomaly detection on road networks can be used to sever for emergency response and is of great importance to traffic management. However, none of the existing approaches can deal with the diversity of anomaly types. In this paper, we propose a novel framework to detect multiple types of anomalies. The framework incorporates real-time and historical traffic into a tensor model and acquires spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2021

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w13131862