Application of locally linear embedding algorithm on hotel data text classification
نویسندگان
چکیده
منابع مشابه
Locally linear embedding for classification
Locally linear embedding (LLE) is a recently proposed unsupervised procedure for mapping high-dimensional data nonlinearly to a lower-dimensional space. In this paper, a supervised variation on LLE is proposed. This mapping, when combined with simple classifiers such as the nearest mean classifier, is shown to yield remarkably good classification results in experiments. Furthermore, a number of...
متن کاملIncremental Locally Linear Embedding Algorithm
A number of manifold learning algorithms have been recently proposed, including locally linear embedding (LLE). These algorithms not only merely reduce data dimensionality, but also attempt to discover a true low dimensional structure of the data. The common feature of the most of these algorithms is that they operate in a batch or offline mode. Hence, when new data arrive, one needs to rerun t...
متن کاملGene expression data classification using locally linear discriminant embedding
Gene expression data collected from DNA microarray are characterized by a large amount of variables (genes), but with only a small amount of observations (experiments). In this paper, manifold learning method is proposed to map the gene expression data to a low dimensional space, and then explore the intrinsic structure of the features so as to classify the microarray data more accurately. The ...
متن کاملAn Iterative Locally Linear Embedding Algorithm
Locally Linear embedding (LLE) is a popular dimension reduction method. In this paper, we systematically improve the two main steps of LLE: (A) learning the graph weights W, and (B) learning the embedding Y. We propose a sparse nonnegative W learning algorithm. We propose a weighted formulation for learning Y and show the results are identical to normalized cuts spectral clustering. We further ...
متن کاملSupervised locally linear embedding for classification: an application to gene expression data analysis Supervised locally linear embedding in problemi di classificazione: un’applicazione all’analisi di dati di espressione genica
Some real problems, such as image recognition or the analysis of gene expression data, involve the observation of a very large number of variables on a few units. In such a context conventional classification methods are difficult to employ both from analytical and interpretative points of view. In this paper, a solution based on locally linear embedding (LLE) for supervised classification is p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1634/1/012014