Application of machine learning techniques to lepton energy reconstruction in water Cherenkov detectors
نویسندگان
چکیده
منابع مشابه
Large Natural Cherenkov Detectors : Water and Ice
In this review we rst address 2 questions: why do we need kilometer-scale muon and neutrino detectors? what do we learn from the operating Baikal and AMANDA detectors about the construction of kilometer-scale detectors? I will subsequently discuss the challenges for building the next-generation detectors. The main message is that these are diierent, in fact less ominous, than for commissioning ...
متن کاملthe role of russia in transmission of energy from central asia and caucuses to european union
پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...
15 صفحه اولApplication of Machine Learning Techniques in Aquaculture
In this paper we present applications of different machine learning algorithms in aquaculture. Machine learning algorithms learn models from historical data. In aquaculture historical data are obtained from farm practices, yields, and environmental data sources. Associations between these different variables can be obtained by applying machine learning algorithms to historical data. In this pap...
متن کاملThe Effect of Wavelength Shifters on Water Cherenkov Detectors
In recent years several experiments have been planned to measure the proton lifetime and, among those under construction, some detectors [ 1 3 ] use large amounts of water as a source of protons and Cherenkov light (CL) for detection of p-decay products. The dynamical interpretation of the events and the vertex reconstruction are the main problems in water Cherenkov detectors; these problems ca...
متن کاملApplication of Machine Learning Techniques to Predict Software Reliability
In this paper, the authors employed machine learning techniques, specifically, Back propagation trained neural network (BPNN), Group method of data handling (GMDH), Counter propagation neural network (CPNN), Dynamic evolving neuro–fuzzy inference system (DENFIS), Genetic Programming (GP), TreeNet, statistical multiple linear regression (MLR), and multivariate adaptive regression splines (MARS),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Instrumentation
سال: 2018
ISSN: 1748-0221
DOI: 10.1088/1748-0221/13/04/p04009