Application of Statistic Model and Backpropagation Neural Network to Analyzing and Forecasting Hydropower Dam Displacement

نویسندگان

چکیده

Horizontal displacement of Hoa Binh dam in operation phase is analyzed and then forecasted by using three methods: the multi-regression model (MTR), Seasonal Integrated Auto-regressive Moving Average (SARIMA) Back-propagation Neural Network (BPNN) model. The monitoring data Dam 137 periods, including horizontal displacement, time, reservoir water level air temperature, are used for experiments. results indicate that all these methods can describe real trend deformation achieve required accuracy short-term forecast up to 9 months. In addition, BPNN have highest stability accuracy.
 

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction and validation of translation metacognitive strategy questionnaire and its application to translation quality

like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

Genetic Algorithm Neural Network Model vs Backpropagation Neural Network Model for GDP Forecasting

This paper evaluates the usefulness of neural networks in GDP forecasting. It is focused on comparing a neural network model trained with genetic algorithm (GANN) to a backpropagation neural network model, both used to forecast the GDP of Albania. Its forecasting is of particular importance in decision-making issues in the field of economy. The conclusion is that the GANN model achieves higher ...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Forecasting Wheat Price Using Backpropagation And NARX Neural Network

--------------------------------------------------ABSTRACT-------------------------------------------------------This study aims to investigate suitable model and forecast future wheat price using backpropagation neural network (BPNN) and nonlinear autoregressive models with exogenous inputs (NARX) networks. The price of wheat was estimated using prices of 3 types of grains widely used in agric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: VNU Journal of Science: Earth and Environmental Sciences

سال: 2021

ISSN: ['2615-9325', '2615-9279', '2588-1094']

DOI: https://doi.org/10.25073/2588-1094/vnuees.4529