Approximating maximum likelihood performance reduced dimension VBLAST detection algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Two-stage constellation partition algorithm for reduced-complexity multiple-input multiple-output-maximum-likelihood detection systems

This study presents the analysis of a constellation partition (CP) algorithm for multiple-input multiple-output– maximum-likelihood detection (MIMO–MLD) systems. The authors consider an Nt by Nr MIMO system, where MLD algorithm is employed at the receiver side for MIMO signal detection. The authors show that for the case of orthogonal space-time block codes and MIMO beamforming (MIMO-BF) system...

متن کامل

Regularized Maximum Likelihood for Intrinsic Dimension Estimation

We propose a new method for estimating the intrinsic dimension of a dataset by applying the principle of regularized maximum likelihood to the distances between close neighbors. We propose a regularization scheme which is motivated by divergence minimization principles. We derive the estimator by a Poisson process approximation, argue about its convergence properties and apply it to a number of...

متن کامل

Maximum Likelihood Estimation of Intrinsic Dimension

We propose a new method for estimating intrinsic dimension of a dataset derived by applying the principle of maximum likelihood to the distances between close neighbors. We derive the estimator by a Poisson process approximation, assess its bias and variance theoretically and by simulations, and apply it to a number of simulated and real datasets. We also show it has the best overall performanc...

متن کامل

Maximum Likelihood Face Detection

In this paper we present a visual learning approach that uses non-parametric probability estimators. We use entropy analysis over the training set in order to select the features that best represent the pattern class of faces, and set up discrete probability models. These models are tested in the context of maximum likelihooddetection of faces. Excellent results are reported in terms of the cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Information Sciences

سال: 2010

ISSN: 1674-733X,1869-1919

DOI: 10.1007/s11432-010-4002-0