Approximation of Fixed Points for Suzuki’s Generalized Non-Expansive Mappings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coincidence Points and Common Fixed Points for Expansive Type Mappings in $b$-Metric Spaces

The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in $b$-metric spaces. Finally, we investigate that the equivalence of one of these results in the context of cone $b$-metric spaces cannot be obtained by the techniques using scalarization function....

متن کامل

Approximation to Fixed Points of Generalized Nonexpansive Mappings

Let K be a convex subset of a uniformly convex Banach space. It is proved that if K is compact, then the fixed points of a continuous generalized nonexpansive self-mapping T on K can be approximated by the iterates of T, with t B (0,1), T,(x) = (1 t)x + tT(x), x e K; T, is asymptotically regular if T has a fixed point. Let (X, d) be a (nonempty) metric space. A function a of X X X into [0, oo) ...

متن کامل

Common Fixed Points for Expansive Mappings in Cone Metric Spaces

Common fixed point results are obtained for pairs of expansive mappings in cone metric spaces. Thus, various results from metric spaces are extended to this new setting. Mathematics Subject Classification: 47H10, 54H25

متن کامل

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7060522