Approximation theorems for positive operators on Lp-spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norms of Positive Operators on LP-Spaces

Let 0 < T: LP(Y, v) -+ Lq(X, ) be a positive linear operator and let HITIP ,q denote its operator norm. In this paper a method is given to compute 1Tllp, q exactly or to bound 11Tllp q from above. As an application the exact norm 11VIlp,q of the Volterra operator Vf(x) = fo f(t)dt is computed.

متن کامل

Korovkin-type Theorems and Approximation by Positive Linear Operators

This survey paper contains a detailed self-contained introduction to Korovkin-type theorems and to some of their applications concerning the approximation of continuous functions as well as of L-functions, by means of positive linear operators. The paper also contains several new results and applications. Moreover, the organization of the subject follows a simple and direct approach which quick...

متن کامل

On Some Approximation Theorems for Power q-Bounded Operators on Locally Convex Vector Spaces

This paper deals with the study of some operator inequalities involving the power q-bounded operators along with the most known properties and results, in the more general framework of locally convex vector spaces.

متن کامل

Remarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''

In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...

متن کامل

Bounds on the spectral radius of Hadamard products of positive operators on lp-spaces

Recently, K.M.R. Audenaert (2010), and R.A. Horn and F. Zhang (2010) proved inequalities between the spectral radius of Hadamard products of finite nonnegative matrices and the spectral radius of their ordinary matrix product. We will prove these inequalities in such a way that they extend to infinite nonnegative matrices A and B that define bounded operators on the classical sequence spaces lp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1990

ISSN: 0021-9045

DOI: 10.1016/0021-9045(90)90097-a