Area Inequalities for Embedded Disks Spanning Unknotted Curves

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Area Inequalities for Embedded Disks Spanning Unknotted Curves

We show that a smooth unknotted curve in R3 satisfies an isoperimetric inequality that bounds the area of an embedded disk spanning the curve in terms of two parameters: the length L of the curve and the thickness r (maximal radius of an embedded tubular neighborhood) of the curve. For fixed length, the expression giving the upper bound on the area grows exponentially in 1/r2. In the direction ...

متن کامل

The Size of Spanning Disks for Polygonal Curves

For each integer n ≥ 0, there is a closed, unknotted, polygonal curve Kn in R3 having less than 10n + 9 edges, with the property that any Piecewise-Linear triangulated disk spanning the curve contains at least 2n−1 triangles.

متن کامل

The size of spanning disks

For each integer n > 1 we construct a closed unknotted PL curve Kn in R 3 having less than 33n edges with the property that any PL triangluated disk spanning the curve contains at least 2 n triangles.

متن کامل

Relative isoperimetric inequalities for Lagrangian disks

for some universal constant μ by constructing an explicit isotropic deformation of C to a single point. In this note, we wish to prove a relative analogue of this result. Our interest comes from the application of the relative isoperimetric inequality to the regularity of an area minimizing Lagrangian surface [Wa]. Let ̟ = dx∧dy+dx∧dy be the standard symplectic form on C with coordinates z = x +...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2004

ISSN: 0022-040X

DOI: 10.4310/jdg/1102536708