Arithmetic of Pell surfaces
نویسندگان
چکیده
منابع مشابه
Arithmetic Progressions on Pell Equations
IF Introduction sn IWWW fremner I onsidered rithmeti progressions on ellipti urvesF fremner onstruted ellipti urves with rithmeti progressions of length UD iFeF rtionl points @X; Y A whose XE oordintes re in rithmeti progressionF sn following pper fremnerD ilvermn nd znkis P showed tht sugroup of the ellipti urve E@QA with E X Y 2 a X@X 2 n 2 A of rnk I doe...
متن کاملArithmetic properties of q-Fibonacci numbers and q-pell numbers
We investigate some arithmetic properties of the q-Fibonacci numbers and the q-Pell numbers.
متن کاملArithmetic of K3 surfaces
We review recent developments in the arithmetic of K3 surfaces. Our focus lies on aspects of modularity, Picard number and rational points. Throughout we emphasise connections to geometry.
متن کاملArithmetic of K3 Surfaces
Being surfaces of intermediate type, i.e., neither geometrically rational or ruled, nor of general type, K3 surfaces have a rich yet accessible arithmetic theory, which has started to come into focus over the last fifteen years or so. These notes, written to accompany a 4-hour lecture series at the 2015 Arizona Winter School, survey some of these developments, with an emphasis on explicit metho...
متن کاملBogomolov Unstability on Arithmetic Surfaces
In this paper, we will consider an arithmetic analogue of Bogomolov unstability theorem, i.e. if (E, h) is a torsion free Hermitian sheaf on an arithmetic surface X and d̂eg ( (rkE − 1)ĉ1(E, h) − (2 rkE)ĉ2(E, h) ) > 0, then there is a non-zero saturated subsheaf F of E such that ĉ1(F, h|F )/rkF − ĉ1(E, h)/rkE lies in the positive cone of X. 0. Introduction In [Bo], Bogomolov proved unstability t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2011
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa146-1-1