Artificial Immune System–Negative Selection Classification Algorithm (NSCA) for Four Class Electroencephalogram (EEG) Signals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach

OBJECTIVE An electroencephalogram-based (EEG-based) brain-computer-interface (BCI) provides a new communication channel between the human brain and a computer. Amongst the various available techniques, artificial neural networks (ANNs) are well established in BCI research and have numerous successful applications. However, one of the drawbacks of conventional ANNs is the lack of an explicit inp...

متن کامل

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

Classification of EEG Signals for Discrimination of Two Imagined Words

In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...

متن کامل

applying genetic algorithm to eeg signals for feature reduction in mental task classification

brain-computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing eeg signals measured in different mental states.  therefore, choosing suitable features is demanded for a good bci communication. in this regard, one of the points to be considered is feature vector dimensionality. we present a method of feature reduction us...

متن کامل

Multi Objective Artificial Immune System Weighted Feature Selection for Classification

Supervised learning algorithm based on an AIS using clonal selection is already proposed [1]. Even though some AIS for classification have been developed, an artificial immune system for classification with local feature selection model has a unique feature; it includes the local feature selection mechanism. The aim of feature selection is to reduce the dimension of the input vector by the sele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Human Neuroscience

سال: 2018

ISSN: 1662-5161

DOI: 10.3389/fnhum.2018.00439