Asymptotic behavior of solutions to abstract functional differential equations
نویسندگان
چکیده
منابع مشابه
Asymptotic Behavior of Solutions of Nonlinear Functional Differential Equations
Using the properties of almost nonexpansive curves introduced by B. Djafari Rouhani, we study the asymptotic behavior of solutions of nonlinear functional differential equation du(t)/dt + Au(t)+ G(u)(t) f(t), where A is a maximal monotone operator in a nilbert space H,f E LI(0,:H) and G:C([O,c):D(A))LI(O,c:H)is a given mapping.
متن کاملAsymptotic Stability of Solutions to Abstract Differential Equations
An evolution problem for abstract differential equations is studied. The typical problem is: u̇ = A(t)u+F(t,u), t ≥ 0; u(0) = u0; u̇ = du dt (∗) Here A(t) is a linear bounded operator in a Hilbert spaceH, and F is a nonlinear operator, ‖F(t,u)‖≤ c0‖u‖, p > 1, c0, p = const > 0. It is assumed that Re(A(t)u,u) ≤ −γ(t)‖u‖2 ∀u ∈ H, where γ(t) > 0, and the case when limt→∞ γ(t) = 0 is also considered....
متن کاملDifferential Delayed Equations - Asymptotic Behavior of Solutions and Positive Solutions
Brief Summary of Basic Notions For a b R , ∈ , a b < , let ([ ] ) n C a b R , , be the Banach space of the continuous functions from the interval [ ] a b , into n R equipped with the supremum norm | ⋅ | . In the case 0 a r = − < , 0 b = , we shall denote this space as r C , that is, ([ 0] ) n r C C r R := − , , and put 0 sup ( ) r r σ φ φ σ − ≤ ≤ || || = | | for r C φ∈ . If R σ ∈ , 0 A ≥ and ([...
متن کاملASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO n-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS
We establish conditions for the linear differential equation y(t) + p(t)y(g(t)) = 0 to have property A. Explicit sufficient conditions for the oscillation of the the equation is obtained while dealing with the property A of the equations. A comparison theorem is obtained for the oscillation of the equation with the oscillation of a third order ordinary differential equation.
متن کاملAsymptotic Behavior of the Solutions of Nonlinear Differential Equations
3. J. S. MacNerney, Stieltjes integrals in linear spaces, Ann. of Math. (2) 61 (1955), 354-367. 4. -, Continuous products in linear spaces, J. Elisha Mitchell Sei. Soc. 71 (1955), 185-200. 5. ■-, Determinants of harmonic matrices, Proc. Amer. Math. Soc. 7 (1956), 1044-1046. 6. F. W. Stallard, Differential systems with interface conditions, Oak Ridge National Laboratory Publication no. 1876 (Phy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2009
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.03.029