ATM: Adversarial-neural Topic Model
نویسندگان
چکیده
منابع مشابه
A Neural Autoregressive Topic Model
We describe a new model for learning meaningful representations of text documents from an unlabeled collection of documents. This model is inspired by the recently proposed Replicated Softmax, an undirected graphical model of word counts that was shown to learn a better generative model and more meaningful document representations. Specifically, we take inspiration from the conditional mean-fie...
متن کاملTopic Compositional Neural Language Model
We propose a Topic Compositional Neural Language Model (TCNLM), a novel method designed to simultaneously capture both the global semantic meaning and the local wordordering structure in a document. The TCNLM learns the global semantic coherence of a document via a neural topic model, and the probability of each learned latent topic is further used to build a Mixture-ofExperts (MoE) language mo...
متن کاملA Hybrid Neural Network-Latent Topic Model
This paper introduces a hybrid model that combines a neural network with a latent topic model. The neural network provides a lowdimensional embedding for the input data, whose subsequent distribution is captured by the topic model. The neural network thus acts as a trainable feature extractor while the topic model captures the group structure of the data. Following an initial pretraining phase ...
متن کاملSenGen: Sentence Generating Neural Variational Topic Model
We present a new topic model that generates documents by sampling a topic for one whole sentence at a time, and generating the words in the sentence using an RNN decoder that is conditioned on the topic of the sentence. We argue that this novel formalism will help us not only visualize and model the topical discourse structure in a document better, but also potentially lead to more interpretabl...
متن کاملDomain-Adversarial Neural Networks
We introduce a new representation learning algorithm suited to the context of domain adaptation, in which data at training and test time come from similar but different distributions. Our algorithm is directly inspired by theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on a data representation that cannot discriminate bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Processing & Management
سال: 2019
ISSN: 0306-4573
DOI: 10.1016/j.ipm.2019.102098