Attractor Dynamics of Spatially Correlated Neural Activity in the Limbic System
نویسندگان
چکیده
منابع مشابه
Attractor dynamics of spatially correlated neural activity in the limbic system.
Attractor networks are a popular computational construct used to model different brain systems. These networks allow elegant computations that are thought to represent a number of aspects of brain function. Although there is good reason to believe that the brain displays attractor dynamics, it has proven difficult to test experimentally whether any particular attractor architecture resides in a...
متن کاملcomparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.
heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...
15 صفحه اولAttractor Dynamics in an Electronic Neural Network
LANN is an electronic device implementing in discrete elec tronics a neurons fully connected attractor neural network with stochas tic learning We summarize in this paper some key features emerged by extensive tests performed to elucidate the neuronal collective dynamics the learning dynamics and the memory capacity of the LANN device
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Attractor Dynamics in Feedforward Neural Networks
We study the probabilistic generative models parameterized by feedforward neural networks. An attractor dynamics for probabilistic inference in these models is derived from a mean field approximation for large, layered sigmoidal networks. Fixed points of the dynamics correspond to solutions of the mean field equations, which relate the statistics of each unit to those of its Markov blanket. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Review of Neuroscience
سال: 2012
ISSN: 0147-006X,1545-4126
DOI: 10.1146/annurev-neuro-062111-150351