Autoignition and flame propagation in non-premixed MILD combustion
نویسندگان
چکیده
منابع مشابه
Cyclic flame propagation in premixed combustion
In experiments of hot surface ignition and subsequent flame propagation, a puffing flame instability is observed in mixtures that are stagnant and premixed prior to ignition. By varying the size of the hot surface, power input, and combustion vessel volume, it was determined that the instability is a function of the interaction of the flame, with the fluid flow induced by the combustion product...
متن کاملSimulations of edge-flame propagation in turbulent non-premixed jets
Ignition, flame propagation and stabilisation have been simulated and analysed in a turbulent jet of non-premixed methane and air. The first order Conditional Moment Closure (CMC) turbulent combustion model was fully coupled with a Reynolds-Averaged Navier Stokes (RANS) flow simulation. A CMC model was developed to account for spark ignition. The over-prediction of turbulent flame propagation w...
متن کاملModeling autoignition in non-premixed turbulent combustion using a stochastic flamelet approach
In this paper, a stochastic flamelet approach is used to model autoignition in an initially non-premixed medium in isotropic and decaying turbulence, using a one-step irreversible reaction. This configuration corresponds to the DNS data from Sreedhara and Lakshmisha [Proc. Combust. Inst. 29 (2002) 2069]. The system can be described by the flamelet equations for the temperature and fuel mass fra...
متن کاملOscillatory flame edge propagation, isolated flame tubes and stability in a non-premixed counterflow
An investigation is carried out into the ranges of Damköhler number and Lewis number, less than unity, in which different forms of combustion phenomena arise within a non-premixed counterflow; cases that are symmetrical across the counterflow are chosen for study. These link oscillatory and steady propagation of flame edges, zero propagation speeds, isolated flame tubes, quenching and marginal ...
متن کاملSimulations of a turbulent non-premixed flame using combined dimension reduction and tabulation for combustion chemistry
The use of large chemical mechanisms of hydrocarbon fuels in turbulent flame simulations is computationally expensive due to the large number of chemical species and the wide range of chemical time scales involved. The reduced description of reactive flows in combination with chemistry tabulation can effectively reduce the simulation time when detailed chemical kinetics is employed in multi-dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combustion and Flame
سال: 2019
ISSN: 0010-2180
DOI: 10.1016/j.combustflame.2018.12.025