Automatic Asbestos Control Using Deep Learning Based Computer Vision System

نویسندگان

چکیده

The paper discusses the results of research and development an innovative deep learning-based computer vision system for fully automatic asbestos content (productivity) estimation in rock chunk (stone) veins open pit within time comparable with work specialists (about 10 min per one processing place). discussed is based on applying instance semantic segmentation artificial neural networks. Mask R-CNN-based network architecture applied to asbestos-containing chunks searching images pit. U-Net-based selected chunks. designed allows search takes rocks near-infrared range (NIR) processes obtained images. result average each controlled It validated estimate as graduated ratio vein area value value, both determined by trained network. For training tasks training, validation, test datasets are collected. demonstrates error about 0.4% under different weather conditions when 1.5–4%. accuracy sufficient use a geological service tool instead currently visual-based estimations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Computer Interaction Using Vision-Based Hand Gesture Recognition

With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...

متن کامل

Human Computer Interaction Using Vision-Based Hand Gesture Recognition

With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...

متن کامل

Hierarchical Convolutional Deep Learning in Computer Vision

It has long been the goal in computer vision to learn a hierarchy of features useful for object recognition. Spanning the two traditional paradigms of machine learning, unsupervised and supervised learning, we investigate the application of deep learning methods to tackle this challenging task and to learn robust representations of images. We begin our investigation with the introduction of a n...

متن کامل

Vision-based Deep Reinforcement Learning

Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[11], beat a world-class player [14] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...

متن کامل

Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control

This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app112210532