AVERAGE-HALF-FACE FOR FACE RECOGNITION USING PCA AND WAVELET TRANSFORM
نویسندگان
چکیده
منابع مشابه
Face Recognition using Wavelet Transform
Face recognition is promising as an active research area spanning several disciplines such as computer vision, patternrecognition, neural network and image processing. It plays animportant role in many application areas such as authentication, human machine and surveillance. Human beings appear to recognize faces in cluttered scenes with relative ease having the ability to identify coarsely qua...
متن کاملFace Recognition Using Pca Wavelet Decomposition
Face recognition plays an important role in biometrics base personal identification. The need for reliable recognition and identification of interacting users is obvious. The biometrics recognition technique acts as an efficient method and wide applications in the area of information retrieval, automatic banking, control of access to security areas and so no. This paper describes a method of fa...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFace Recognition using PCA, Deep Face Method
The performance process of face recognition involves the inspection study of facial features in an image, recognizing those features and comparing them to one of the many faces in the database. There are many algorithms capable of performing face recognition; such as: Principal Component Analysis, Discrete Cosine Transform, 3D recognition methods, Gabor Wavelets method etc. There were many issu...
متن کاملFace Recognition Technique Using PCA, Wavelet and SVM
Biometric-based technologies include the identification based on physiological characteristics such as face, fingerprints, hand geometry, hand veins, palm, iris, retina, ear, voice and behavioral traits such as gait, signature and keystroke dynamics [1]. These biometric technologies require some voluntary action by the user. However, face recognition can be done passively without any explicit a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Intelligent Electronic Systems
سال: 2010
ISSN: 0973-9238
DOI: 10.18000/ijies.30078