Backward error analysis of approximate Gröbner basis
نویسندگان
چکیده
منابع مشابه
Extended Hardness Results for Approximate Gröbner Basis Computation
Two models were recently proposed to explore the robust hardness of Gröbner basis computation. Given a polynomial system, both models allow an algorithm to selectively ignore some of the polynomials: the algorithm is only responsible for returning a Gröbner basis for the ideal generated by the remaining polynomials. For the q-Fractional Gröbner Basis Problem the algorithm is allowed to ignore a...
متن کاملBackward Analysis via over-Approximate Abstraction and under-Approximate Subtraction
We propose a novel approach for computing weakest liberal safe preconditions of programs. The standard approaches, which call for either underapproximation of a greatest fixed point, or complementation of a least fixed point, are often difficult to apply successfully. Our approach relies on a different decomposition of the weakest precondition of loops. We exchange the greatest fixed point for ...
متن کاملBackward Error Analysis for Numerical Integrators Backward Error Analysis for Numerical Integrators
We consider backward error analysis of numerical approximations to ordinary diie-rential equations, i.e., the numerical solution is formally interpreted as the exact solution of a modiied diierential equation. A simple recursive deenition of the modiied equation is stated. This recursion is used to give a new proof of the exponentially closeness of the numerical solutions and the solutions to a...
متن کاملBackward Error Analysis in Computational Geometry
A recent paper, published in Algorithms—ESA2004, presented examples designed to illustrate that using floating-point arithmetic in algorithms for computational geometry may cause implementations to fail. The stated purpose was to demonstrate, to students and implementors, the inadequacy of floating-point arithmetic for geometric computations. The examples presented were both useful and insightf...
متن کاملBackward Error Analysis for Numerical Integrators
Backward error analysis has become an important tool for understanding the long time behavior of numerical integration methods. This is true in particular for the integration of Hamiltonian systems where backward error analysis can be used to show that a symplectic method will conserve energy over exponentially long periods of time. Such results are typically based on two aspects of backward er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Communications in Computer Algebra
سال: 2013
ISSN: 1932-2240
DOI: 10.1145/2429135.2429161