Backward error for the discrete-time algebraic Riccati equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient algorithm for the discrete-time algebraic Riccati equation

In this paper the authors develop a new algorithm to solve the standard discrete-time algebraic Riccati equation by using a skewHamiltonian transformation and the square-root method. The algorithm is structure-preserving and efficient because the Hamiltonian structure is fully exploited and only orthogonal transformations are used. The efficiency and stability of the algorithm are analyzed. Num...

متن کامل

Backward Perturbation Analysis of the Periodic Discrete-Time Algebraic Riccati Equation

Normwise backward errors and residual bounds for an approximate Hermitian positive semidefinite solution set to the periodic discrete-time algebraic Riccati equation are obtained. The results are illustrated by using simple numerical examples.

متن کامل

Intervals of solutions of the discrete-time algebraic Riccati equation

If two solutions Y ≤ Z of the DARE are given then the set of solutions X with Y ≤ X ≤ Z can be parametrized by invariant subspaces of the closed loop matrix corresponding to Y . The paper extends the geometric theory of Willems from the continuous-time to the discrete-time ARE making the weakest possible assumptions.

متن کامل

Perturbation Analysis of the Periodic Discrete-Time Algebraic Riccati Equation

This paper is devoted to the perturbation analysis for the periodic discrete-time algebraic Riccati equations (P-DAREs). Perturbation bounds and condition numbers of the Hermitian positive semidefinite solution set to the P-DAREs are obtained. The results are illustrated by numerical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1997

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(96)00283-2