Bacteria and eukaryotes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Social bacteria and asocial eukaryotes

The end of 2007 brought us draft genome sequences of two eukaryotic microorganisms, Babesia bovis and Malassezia globosa, as well as complete genomes of the ammonia-oxidizing archaeal chemoautotroph Nitrosopumilus maritimus, and several environmental bacteria (Table 1). In terms of genome size, this list covers both sides of the spectrum: the 245 kb genome of an obligate insect symbiont Sulcia ...

متن کامل

DNA Mismatch Repair in Eukaryotes and Bacteria

DNA mismatch repair (MMR) corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as w...

متن کامل

Protein Acetylation in Archaea, Bacteria, and Eukaryotes

Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recentl...

متن کامل

Polyamines in Eukaryotes, Bacteria, and Archaea.

Polyamines are primordial polycations found in most cells and perform different functions in different organisms. Although polyamines are mainly known for their essential roles in cell growth and proliferation, their functions range from a critical role in cellular translation in eukaryotes and archaea, to bacterial biofilm formation and specialized roles in natural product biosynthesis. At fir...

متن کامل

Transfer of DNA from Bacteria to Eukaryotes

Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 1992

ISSN: 0028-0836,1476-4687

DOI: 10.1038/356570a0