Balanced metrics and Berezin quantization on Hartogs triangles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Metric and Berezin Quantization on the Siegel–Jacobi Ball

We determine the matrix of the balanced metric of the Siegel–Jacobi ball and its inverse. We calculate the scalar curvature, the Ricci form and the Laplace–Beltrami operator of this manifold. We discuss several geometric aspects related with Berezin quantization on the Siegel–Jacobi ball.

متن کامل

Berezin–Toeplitz quantization on Lie groups

Let K be a connected compact semisimple Lie group and KC its complexification. The generalized Segal–Bargmann space for KC, is a space of square-integrable holomorphic functions on KC, with respect to a K-invariant heat kernel measure. This space is connected to the “Schrödinger” Hilbert space L(K) by a unitary map, the generalized Segal–Bargmann transform. This paper considers certain natural ...

متن کامل

1 Introduction Berezin-Töplitz Quantization

The general idea of quantization is to find a way to pass from the classical setting to the quantum one. In the classical situation, we have a symplectic manifold (M,ω) standing for the space of “states” of some physical system. The topological data of the manifold is contained in the structure of the function algebra C(M). The smooth structure on M gives rise to a distinguished subalgebra C∞ 0...

متن کامل

Berezin Quantization of the Schrödinger Algebra

We examine the Schrödinger algebra in the framework of Berezin quantization. First, the Heisenberg-Weyl and sl(2) algebras are studied. Then the Berezin representation of the Schrödinger algebra is computed. In fact, the sl(2) piece of the Schrödinger algebra can be decoupled from the Heisenberg component. This is accomplished using a special realization of the sl(2) component that is built fro...

متن کامل

Berezin Quantization and Reproducing Kernels on Complex Domains

Let Ω be a non-compact complex manifold of dimension n, ω = ∂∂Ψ a Kähler form on Ω, and Kα(x, y) the reproducing kernel for the Bergman space Aα of all analytic functions on Ω square-integrable against the measure e−αΨ|ωn|. Under the condition Kα(x, x) = λαe αΨ(x) F. A. Berezin [Math. USSR Izvestiya 8 (1974), 1109–1163] was able to establish a quantization procedure on (Ω, ω) which has recently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)

سال: 2020

ISSN: 0373-3114,1618-1891

DOI: 10.1007/s10231-020-00995-2