Balanced metrics and Berezin quantization on Hartogs triangles
نویسندگان
چکیده
منابع مشابه
Balanced Metric and Berezin Quantization on the Siegel–Jacobi Ball
We determine the matrix of the balanced metric of the Siegel–Jacobi ball and its inverse. We calculate the scalar curvature, the Ricci form and the Laplace–Beltrami operator of this manifold. We discuss several geometric aspects related with Berezin quantization on the Siegel–Jacobi ball.
متن کاملBerezin–Toeplitz quantization on Lie groups
Let K be a connected compact semisimple Lie group and KC its complexification. The generalized Segal–Bargmann space for KC, is a space of square-integrable holomorphic functions on KC, with respect to a K-invariant heat kernel measure. This space is connected to the “Schrödinger” Hilbert space L(K) by a unitary map, the generalized Segal–Bargmann transform. This paper considers certain natural ...
متن کامل1 Introduction Berezin-Töplitz Quantization
The general idea of quantization is to find a way to pass from the classical setting to the quantum one. In the classical situation, we have a symplectic manifold (M,ω) standing for the space of “states” of some physical system. The topological data of the manifold is contained in the structure of the function algebra C(M). The smooth structure on M gives rise to a distinguished subalgebra C∞ 0...
متن کاملBerezin Quantization of the Schrödinger Algebra
We examine the Schrödinger algebra in the framework of Berezin quantization. First, the Heisenberg-Weyl and sl(2) algebras are studied. Then the Berezin representation of the Schrödinger algebra is computed. In fact, the sl(2) piece of the Schrödinger algebra can be decoupled from the Heisenberg component. This is accomplished using a special realization of the sl(2) component that is built fro...
متن کاملBerezin Quantization and Reproducing Kernels on Complex Domains
Let Ω be a non-compact complex manifold of dimension n, ω = ∂∂Ψ a Kähler form on Ω, and Kα(x, y) the reproducing kernel for the Bergman space Aα of all analytic functions on Ω square-integrable against the measure e−αΨ|ωn|. Under the condition Kα(x, x) = λαe αΨ(x) F. A. Berezin [Math. USSR Izvestiya 8 (1974), 1109–1163] was able to establish a quantization procedure on (Ω, ω) which has recently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)
سال: 2020
ISSN: 0373-3114,1618-1891
DOI: 10.1007/s10231-020-00995-2