Bank Syariah Indonesia Share Price Prediction Using Fuzzy Time Series Model Lee Method

نویسندگان

چکیده

In a forecasting using historical data available in the field there is often violation of assumptions required by each method. So that are obstacles fulfillment these assumptions. Because method with Fuzzy Time Series (FTS) solution to do without requiring The purpose this study find out how results prediction highest stock price Bank Syariah Indonesia FTS lee model. This research uses value shares, and analysis technique used descriptive statistical Based on conducted obtained daily shares for next period as July 21, 2021 $2,492.67 per share, fuzzy time series error rate MAPE 2.28263%. Dalam suatu peramalan dengan menggunakan historis yang tersedia di lapangan sering kali terjadi pelanggaran asumsi disyaratkan oleh setiap metode. Sehingga dalam kendala pemenuhan tersebut. Oleh karena metode memberikan solusi untuk melakukan tanpa mensyaratkan asumsi-asumsi data. Tujuan dari penelitian ini adalah mengetahui bagaimana hasil prediksi harga saham tertinggi model Lee. Penelitian nilai Indonesia, dan teknik analisis digunakan statistika deskriptif Berdasarkan dilakukan diperoleh harian satu periode berikutnya pada tanggal 21 Juli 2,492,67 lembar saham, tingkat kesalahan sebesar 2,28263%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Prediction by Perturbed Fuzzy Model

This paper presents a fuzzy system approach to the prediction of nonlinear time series and dynamical systems based on a fuzzy model that includes its derivative information. The underlying mechanism governing the time series, expressed as a set of IF–THEN rules, is discovered by a modified structure of fuzzy system in order to capture the temporal series and its temporal derivative information....

متن کامل

Temperature prediction using fuzzy time series

A drawback of traditional forecasting methods is that they can not deal with forecasting problems in which the historical data are represented by linguistic values. Using fuzzy time series to deal with forecasting problems can overcome this drawback. In this paper, we propose a new fuzzy time series model called the two-factors time-variant fuzzy time series model to deal with forecasting probl...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

chaotic time series prediction by auto fuzzy regression model

since the pioneering work of zadeh, fuzzy set theory has been applied to amyriad of areas. song and chissom introduced the concept of fuzzy time series andapplied some methods to the enrolments of the university of alabama. thereafter weapply fuzzy techniques for system identification and apply statistical techniques tomodelling system. an automatic methodology framework that combines fuzzytech...

متن کامل

Residual analysis using Fourier series transform in Fuzzy time series model

In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Madania

سال: 2022

ISSN: ['2088-3226', '2620-8210']

DOI: https://doi.org/10.29300/madania.v25i2.5453