Bayes multiple decision functions
نویسندگان
چکیده
منابع مشابه
A simple approach to multiple attribute decision making using loss functions
Multiple attribute decision making (MADM) methods are very much essential in all fields of engineering, management and other areas where limited alternatives exist and the decision maker has to select the best alternative. Different methods are available in the literature to tackle the MADM problems. The MADM problems are classified as scoring methods, compromising methods and concordance metho...
متن کاملBayes Decision Problems and Stability
Recent years have seen excellent progress in the ability of Bayesians to compute posterior and predictive quantities of interest. This progress adds to the importance that must be placed on what the inputs to those computations should be, that is, what likelihood, prior and loss function to use. While there are various standpoints on these questions, the one we find most satisfying in principle...
متن کاملSemi-Bayes and empirical Bayes adjustment methods for multiple comparisons.
Epidemiological studies often involve multiple comparisons, and may therefore report many "false positive" statistically significant findings simply because of the large number of statistical tests involved. Traditional methods ofadjustment for multiple comparisons, such as the Bonferroni method, may induce investigators to ignore potentially important findings, because they do not take account...
متن کاملMultilayer neural networks and Bayes decision theory
There are many applications of multilayer neural networks to pattern classification problems in the engineering field. Recently, it has been shown that Bayes a posteriori probability can be estimated by feedforward neural networks through computer simulation. In this paper, Bayes decision theory is combined with the approximation theory on three-layer neural networks, and the two-category n-dim...
متن کاملClasses of Multiple Decision Functions Strongly Controlling FWER and FDR.
Two general classes of multiple decision functions, where each member of the first class strongly controls the family-wise error rate (FWER), while each member of the second class strongly controls the false discovery rate (FDR), are described. These classes offer the possibility that optimal multiple decision functions with respect to a pre-specified Type II error criterion, such as the missed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2013
ISSN: 1935-7524
DOI: 10.1214/13-ejs813