Bayesian estimation of incomplete data using conditionally specified priors
نویسندگان
چکیده
منابع مشابه
Bayesian estimation of incomplete data using conditionally specified priors
In this paper, a class of conjugate prior for estimating incomplete count data based on a broad class of conjugate prior distributions is presented. The new class of prior distributions arises from a conditional perspective, making use of the conditional specification methodology and can be considered as the generalisation of the form of prior distributions that have been used previously in the...
متن کاملMarginally specified priors for non-parametric Bayesian estimation.
Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new fr...
متن کاملAnalysis of Rolling Group Therapy Data Using Conditionally Autoregressive Priors.
Group therapy is a central treatment modality for behavioral health disorders such as alcohol and other drug use (AOD) and depression. Group therapy is often delivered under a rolling (or open) admissions policy, where new clients are continuously enrolled into a group as space permits. Rolling admissions policies result in a complex correlation structure among client outcomes. Despite the ubiq...
متن کاملCompatibility of conditionally specified models.
A conditionally specified joint model is convenient to use in fields such as spatial data modeling, Gibbs sampling, and missing data imputation. One potential problem with such an approach is that the conditionally specified models may be incompatible, which can lead to serious problems in applications. We propose an odds ratio representation of a joint density to study the issue and derive con...
متن کاملClassification with Incomplete Data Using Dirichlet Process Priors
A non-parametric hierarchical Bayesian framework is developed for designing a classifier, based on a mixture of simple (linear) classifiers. Each simple classifier is termed a local "expert", and the number of experts and their construction are manifested via a Dirichlet process formulation. The simple form of the "experts" allows analytical handling of incomplete data. The model is extended to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Simulation and Computation
سال: 2015
ISSN: 0361-0918,1532-4141
DOI: 10.1080/03610918.2015.1091076