Bayesian Nonparametric Inference of Population Size Changes from Sequential Genealogies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric Inference of Population Size Changes from Sequential Genealogies

Sophisticated inferential tools coupled with the coalescent model have recently emerged for estimating past population sizes from genomic data. Recent methods that model recombination require small sample sizes, make constraining assumptions about population size changes, and do not report measures of uncertainty for estimates. Here, we develop a Gaussian process-based Bayesian nonparametric me...

متن کامل

Gaussian process-based Bayesian nonparametric inference of population size trajectories from gene genealogies.

Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly...

متن کامل

Gaussian Process-Based Bayesian Nonparametric Inference of Population Trajectories from Gene Genealogies

Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly...

متن کامل

Web - based Supplementary Materials for Gaussian Process - Based Bayesian Nonparametric Inference of Population Size Trajectories from Gene Genealogies

1. Prior Sensitivity In all our examples, we placed a Gamma prior on the precision parameter θ with parameters α = 0.001 and β = 0.001. This precision parameter, unknown to us a priori, controls the smoothness of the GP prior. We investigate the sensitivity of our results to the Gamma prior specification using the Egyptian HCV data. In the first plot of Figure 1, we show the prior and posterior...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genetics

سال: 2015

ISSN: 1943-2631

DOI: 10.1534/genetics.115.177980