Bell-Based Bernoulli Polynomials with Applications

نویسندگان

چکیده

In this paper, we consider Bell-based Stirling polynomials of the second kind and derive some useful relations properties including summation formulas related to Bell numbers kind. Then, introduce Bernoulli order α investigate multifarious correlations derivative properties. Also, acquire diverse implicit symmetric identities for α. Moreover, attain several interesting arising from umbral calculus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite based poly-Bernoulli polynomials with a q-parameter

Ugur Duran, Mehmet Acikgoz and Serkan Araci Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey E-Mail: [email protected] Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey E-Mail: [email protected] Department of Economics, Faculty of Economics, Administrative and Social Scienc...

متن کامل

Congruences concerning Bernoulli numbers and Bernoulli polynomials

Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...

متن کامل

Congruences involving Bernoulli polynomials

Let {Bn(x)} be the Bernoulli polynomials. In the paper we establish some congruences for Bj(x) (mod p n), where p is an odd prime and x is a rational p-integer. Such congruences are concerned with the properties of p-regular functions, the congruences for h(−sp) (mod p) (s = 3, 5, 8, 12) and the sum P k≡r (mod m) p k , where h(d) is the class number of the quadratic field Q(d) of discriminant d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2021

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms10010029