Bernoulli–Dunkl and Apostol–Euler–Dunkl polynomials with applications to series involving zeros of Bessel functions
نویسندگان
چکیده
منابع مشابه
Some Integrals Involving Bessel Functions Some Integrals Involving Bessel Functions
A number of new definite integrals involving Bessel functions are presented. These have been derived by finding new integral representations for the product of two Bessel functions of different order and argument in terms of the generalized hypergeometric function with subsequent reduction to special cases. Connection is made with Weber's second exponential integral and Laplace transforms of pr...
متن کاملInequalities Involving Generalized Bessel Functions
Let up denote the normalized, generalized Bessel function of order p which depends on two parameters b and c and let λp(x) = up(x), x ≥ 0. It is proven that under some conditions imposed on p, b, and c the Askey inequality holds true for the function λp , i.e., that λp(x) +λp(y) ≤ 1 +λp(z), where x, y ≥ 0 and z = x + y. The lower and upper bounds for the function λp are also established.
متن کاملTheorems and Conjectures Involving Rook Polynomials with Only Real Zeros
Let A = (aij) be a real n n matrix with non-negative entries which are weakly increasing down columns. If B = (bij) is the n n matrix where bij := aij+z; then we conjecture that all of the roots of the permanent of B, as a polynomial in z; are real. Here we establish several special cases of the conjecture.
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2018
ISSN: 0021-9045
DOI: 10.1016/j.jat.2018.06.001