Bernstein polynomial of $2$-Puiseux pairs irreducible plane curve singularities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Plane Curve Singularity (toric Resolution and Puiseux Pairs)

Let (C,O), O = (0, 0) be a plane curve which is defined by {(x, y) ∈ U ; f(x, y) = 0} where U is an open neighbourhood of O and f(x, y) is an holomorphic function defined on U . The purpose of this survey is to give an elementary proof of an embedded resolution of a curve germ (C,O), first by ordinary blowing-ups and then by toric modifications. This note is prepared for the lecture at CIMPA sc...

متن کامل

Effective construction of irreducible curve singularities

1 By using the effective notion of the approximate roots of a polynomial, we describe the equisingularity classes of irreducible curve singularities with a given Milnor number.

متن کامل

Exponents of an Irreducible Plane Curve Singularity

exp(2 i( p 1 i ) are the eigenvalues of the Milnor monodromy and their integral part is determined by the Hodge ltration of the mixed Hodge structure. This notion was rst introduced by Steenbrink [11]. By [14] the exponents are constant under -constant deformation of f . In particular, they depend only on f 1 (0). They express the vanishing order (up to the shift by one) of the period integrals...

متن کامل

Generic Bernstein-sato Polynomial on an Irreducible Affine Scheme

Given p polynomials with coefficients in a commutative unitary integral ring C containing Q, we define the notion of a generic Bernstein-Sato polynomial on an irreducible affine scheme V ⊂ Spec(C). We prove the existence of such a non zero rational polynomial which covers and generalizes previous existing results by H. Biosca. When C is the ring of an algebraic or analytic space, we deduce a st...

متن کامل

Spectral Pairs, Mixed Hodge Modules, and Series of Plane Curve Singularities

We consider a mixed Hodge module M on a normal surface sin-gularity (XXx) and a holomorphic function germ f : (XXx) ! (C 0). For the case that M has an abelian local monodromy g r o u p , w e g i v e a formula for the spectral pairs of f with values in M. This result is applied to generalize the Sebastiani-Thom formula and to describe the behaviour of spectral pairs in series of singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods and Applications of Analysis

سال: 2017

ISSN: 1073-2772,1945-0001

DOI: 10.4310/maa.2017.v24.n2.a2