BERT Learns From Electroencephalograms About Parkinson’s Disease: Transformer-Based Models for Aid Diagnosis
نویسندگان
چکیده
Medicine is a complex field with highly trained specialists extensive knowledge that continuously needs updating. Among them all, those who study the brain can perform tasks due to structure of this organ. There are neurological diseases such as degenerative ones whose diagnoses essential in very early stages. Parkinson’s disease one them, usually having confirmed diagnosis when it already developed. Some physicians have proposed using electroencephalograms non-invasive method for prompt diagnosis. The problem these tests data analysis relies on clinical eye experienced professional, which entails situations escape human perception. This research proposes use deep learning techniques combination develop These models demonstrated their good performance managing massive amounts data. Our main contribution apply from Natural Language Processing, particularly an adaptation BERT models, being last milestone area. model choice similarity between texts and be processed sequences. Results show best uses 64 channels people without resting states finger-tapping tasks. In terms metrics, has values around 86%.
منابع مشابه
Calretinin Immunohistochemistery: An Aid in the Diagnosis of Hirschsprung’s Disease
Objective(s) Definite diagnosis of Hirschsprung’s disease (HD) is based on histopathological study, but there are limitations associated with standard histology and histochemistry in this regard. The aim of this study was to investigate calretinin immunostaining patterns in both ganglionic and aganglionic HD intestinal specimens and to compare them with control specimens. Materials and Method...
متن کاملتععین پارامتر های ترانسفورماتور به منظور تشخیص خطا transformer parameter determination for the purpose of failure diagnosis
چکیده ترانسفورماتورهای قدرت ادوات گران قیمتی هستنند که نقش بسیار مهمی را در سیستم های قدرت ایفا می کنند. در سالهای اخیر روشهای مختلفی جهت تشخیص خطا و مونیتورینگ ترانسفورماتورها ارائه شده است. در این پایان نامه برخی از این روشها جهت تعیین پارامتر های ترانسفورماتور در شرایط سالم و خطاهای مختلف در محدوده ی وسیعی از فرکانس بررسی شده است. همچنین با استفاده از روش اجزای محدود و محاسبات بر پایه فرمو...
15 صفحه اولLearning Multi-class Neural-Network Models from Electroencephalograms
We describe a new algorithm for learning multi-class neural-network models from large-scale clinical electroencephalograms (EEGs). This algorithm trains hidden neurons separately to classify all the pairs of classes. To find best pairwise classifiers, our algorithm searches for input variables which are relevant to the classification problem. Despite patient variability and heavily overlapping ...
متن کاملcalretinin immunohistochemistery: an aid in the diagnosis of hirschsprung’s disease
objective(s) definite diagnosis of hirschsprung’s disease (hd) is based on histopathological study, but there are limitations associated with standard histology and histochemistry in this regard. the aim of this study was to investigate calretinin immunostaining patterns in both ganglionic and aganglionic hd intestinal specimens and to compare them with control specimens. materials and methods ...
متن کاملArtificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3201843