Bertini theorems for F-signature and Hilbert–Kunz multiplicity

نویسندگان

چکیده

We show that Bertini theorems hold for F-signature and Hilbert–Kunz multiplicity. In particular, if $$X \subseteq {\mathbb {P}}^n$$ is normal quasi-projective with greater than $$\lambda $$ (respectively the multiplicity less ) at all points $$x \in X$$ , then a general hyperplane $$H multiplicity) of \cap H$$ X .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application to Global Bertini Theorems

Let k be an infinite field of arbitrary characteristic, (A,M, K) a k-algebra of essentially finite type, with K/k separable and P a local property. We say that LBk(P) holds if: For the generic α = (α1, . . . , αn) ∈ k ⇒ P(AxαA) ⊆ P(A)∩V (xα)∩ UP (xα = ∑ αixi, 〈x1, . . . , xn〉 = M, UP non-empty open subset of SpecA and P(A) = {P ∈ SpecA|Ap is P}). We show that: LBK(P) holds ⇒ LBK(GP) holds for t...

متن کامل

Bertini Theorems over Finite Fields

Let X be a smooth quasiprojective subscheme of P of dimension m ≥ 0 over Fq. Then there exist homogeneous polynomials f over Fq for which the intersection of X and the hypersurface f = 0 is smooth. In fact, the set of such f has a positive density, equal to ζX(m + 1) −1, where ζX(s) = ZX(q −s) is the zeta function of X. An analogue for regular quasiprojective schemes over Z is proved, assuming ...

متن کامل

Bertini Irreducibility Theorems over Finite Fields

Given a geometrically irreducible subscheme X ⊆ PnFq of dimension at least 2, we prove that the fraction of degree d hypersurfaces H such that H ∩X is geometrically irreducible tends to 1 as d→∞. We also prove variants in which X is over an extension of Fq, and in which the immersion X → PnFq is replaced by a more general morphism.

متن کامل

Finite multiplicity theorems

We find upper and lower bounds of the multiplicities of irreducible admissible representations π of a semisimple Lie group G occurring in the induced representations IndH τ from irreducible representations τ of a closed subgroup H. As corollaries, we establish geometric criteria for finiteness of the dimension of HomG(π, Ind G H τ) (induction) and of HomH(π|H , τ) (restriction) by means of the ...

متن کامل

On Certain Multiplicity One Theorems

We prove several multiplicity one theorems in this paper. For k a local field not of characteristic two, and V a symplectic space over k, any irreducible admissible representation of the symplectic similitude group GSp(V ) decomposes with multiplicity one when restricted to the symplectic group Sp(V ). We prove the analogous result for GO(V ) and O(V ), where V is an orthogonal space over k. Wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02712-y