Best Possible Inequalities between Generalized Logarithmic Mean and Classical Means

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Possible Inequalities between Generalized Logarithmic Mean and Classical Means

and Applied Analysis 3 Theorem B. For all positive real numbers a and b with a/ b, we have √ G a, b A a, b < √ L a, b I a, b

متن کامل

Best Possible Inequalities among Harmonic, Geometric, Logarithmic and Seiffert Means

In this paper, we find the greatest value α and the least values β , p , q and r in (0,1/2) such that the inequalities L(αa+ (1−α)b,αb+ (1−α)a) < P(a,b) < L(βa + (1− β)b,βb + (1− β)a) , H(pa + (1− p)b, pb + (1− p)a) > G(a,b) , H(qa+ (1− q)b,qb +(1− q)a) > L(a,b) , and G(ra+(1− r)b,rb+(1− r)a) > L(a,b) hold for all a,b > 0 with a = b . Here, H(a,b) , G(a,b) , L(a,b) and P(a,b) denote the harmoni...

متن کامل

Inequalities for Generalized Logarithmic Means

For p ∈ R, the generalized logarithmic mean Lp of two positive numbers a and b is defined as Lp a, b a, for a b, LP a, b b 1 − a 1 / p 1 b − a 1/p , for a/ b, p / − 1, p / 0, LP a, b b − a / log b − loga , for a/ b, p −1, and LP a, b 1/e b/a 1/ b−a , for a/ b, p 0. In this paper, we prove that G a, b H a, b 2L−7/2 a, b , A a, b H a, b 2L−2 a, b , and L−5 a, b H a, b for all a, b > 0, and the co...

متن کامل

Optimal Inequalities for Generalized Logarithmic, Arithmetic, and Geometric Means

Copyright q 2010 B.-Y. Long and Y.-M. Chu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For p ∈ R, the generalized logarithmic mean L p a, b, arithmetic mean Aa, b, and geometric mean Ga, b of two positive numbers a and b are d...

متن کامل

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2010

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2010/303286