Best Proximity Point Theorems for Some New Cyclic Mappings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Proximity Point Theorems for Some New Cyclic Mappings

Let A and B be nonempty subsets of a metric space X, d . Consider a mapping T : A ∪ B → A ∪ B, T is called a cyclic map if T A ⊆ B and T B ⊆ A. x ∈ A is called a best proximity point of T in A if d x, Tx d A,B is satisfied, where d A,B inf{d x, y : x ∈ A, y ∈ B}. In 2005, Eldred et al. 1 proved the existence of a best proximity point for relatively nonexpansive mappings using the notion of prox...

متن کامل

On Best Proximity Point Theorems for New Cyclic Maps

In this paper, we first introduce the concept of MT − K condition. Some best proximity point theorems for mappings satisfying MT − K condition instead of K-cyclic mappings are established in metric spaces. Our results generalize and improve some main results in [5] and references therein. Mathematics Subject Classification: 54H25

متن کامل

On best proximity points for multivalued cyclic $F$-contraction mappings

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.

متن کامل

Some Existence and Convergence Theorems of Best Proximity Point for New Nonlinear Cyclic Maps

In this paper, some new existence and convergence theorems of best proximity point for new nonlinear cyclic maps are established. These results generalize and improve some main results in [5, 20, 21] and references therein.

متن کامل

Best Proximity Point Theorems for F -contractive Non-self Mappings

In this article, we prove the existence of a best proximity point for F contractive nonself mappings and state some results in the complete metric spaces. Also we define two kinds of F proximal contraction and extend some best proximity theorems and improve the recent results. 2010 Mathematics Subject Classification: 46N40; 47H10; 54H25; 46T99

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/643729