Better Approaches for n-Times Differentiable Convex Functions
نویسندگان
چکیده
منابع مشابه
Hermite-Hadamard type inequalities for n-times differentiable and geometrically quasi-convex functions.
By Hölder's integral inequality, the authors establish some Hermite-Hadamard type integral inequalities for n-times differentiable and geometrically quasi-convex functions.
متن کاملFractional Hermite-Hadamard type inequalities for n-times log-convex functions
In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.
متن کاملInequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملApproximations of differentiable convex functions on arbitrary convex polytopes
Let Xn := {xi}ni=0 be a given set of (n + 1) pairwise distinct points in R (called nodes or sample points), let P = conv(Xn), let f be a convex function with Lipschitz continuous gradient on P and λ := {λi}ni=0 be a set of barycentric coordinates with respect to the point set Xn. We analyze the error estimate between f and its barycentric approximation:
متن کاملHow to Define ”convex Functions” on Differentiable Manifolds
In the paper a class of families F(M) of functions defined on differentiable manifolds M with the following properties: 1F . if M is a linear manifold, then F(M) contains convex functions, 2F . F(·) is invariant under diffeomorphisms, 3F . each f ∈ F(M) is differentiable on a dense Gδ-set, is investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8060950