(Bi)-orthogonality relation for eigenfunctions of self-adjoint operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non–self–adjoint Fourth–order Dissipative Operators and the Completeness of Their Eigenfunctions

A class of non-self-adjoint fourth order differential operators with general separated boundary conditions in Weyl’s limit circle case is studied. The dissipation property of the considered operators in L2[a,b) is proven by analysis and by using the characteristic determinant, the completeness of the system of eigenfunctions and associated functions of these dissipative operators also be proven...

متن کامل

Diagonals of Self-adjoint Operators

The eigenvalues of a self-adjoint n×n matrix A can be put into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according to multiplicity, and the diagonal of A is a point of R that bears some relation to λ. The Schur-Horn theorem characterizes that relation in terms of a system of linear inequalities. We prove an extension of the latter result for positive trace-class operators on ...

متن کامل

Stability indices for constrained self-adjoint operators

A wide class of problems in the study of the spectral and orbital stability of dispersive waves in Hamiltonian systems can be reduced to understanding the so-called “energy spectrum,” that is the spectrum of the second variation of the Hamiltonian evaluated at the wave shape, which is constrained to act on a closed subspace of the underlying Hilbert space. We present a substantially simplified ...

متن کامل

Spectral Theory for Compact Self-Adjoint Operators

This agrees with the definition of the spectrum in the matrix case, where the resolvent set comprises all complex numbers that are not eigenvalues. In terms of its spectrum, we will see that a compact operator behaves like a matrix, in the sense that its spectrum is the union of all of its eigenvalues and 0. We begin with the eigenspaces of a compact operator. We start with two lemmas that we w...

متن کامل

Spectral Theorem for Self-adjoint Linear Operators

Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

سال: 2019

ISSN: 1364-503X,1471-2962

DOI: 10.1098/rsta.2019.0112